
B4:	Mongoose	and	RESTful	APIs	 1	

COM644	Full-Stack	Web	and	App	Development	
	

Practical	B4:	Mongoose	and	RESTful	APIs	
	
	

Aims	
• To	introduce	the	concept	of	RESTful	services	
• To	explain	the	HTTP	methods	and	response	codesnnection	
• To	demonstrate	API	design	and	the	appropriate	combinations	of	

methods	and	response	codes	for	a	range	of	endpoints	
• To	introduce	Mongoose	as	an	Object	Data	Mapping	library	for	MongoDB		
• To	demonstrate	the	establishment	in	a	Mongoose	connection	
• To	deonnstrate	the	construction	of	a	Mongoose	schema	and	its	

compilation	to	a	data	model	
• To	illustrate	recasting	of	a	database	structure	to	best	suit	the	needs	of	

an	application.		

Contents	
B4.1	INTRODUCTION	TO	RESTFUL	APIS	...	2	

B4.1.1	WHAT	IS	A	RESTFUL	API?	..	2	
B4.1.2	HTTP	METHODS	AND	RESPONSES	..	3	
B4.1.3	API	DESIGN	..	4	

B4.2	MONGOOSE	...	6	
B4.2.1	INSTALL	MONGOOSE	..	6	
B4.2.2	ESTABLISH	A	MONGOOSE	CONNECTION	...	6	

B4.3	DATA	SCHEMAS	AND	MODELS	..	8	
B4.3.1	BASIC	SCHEMA	ELEMENTS	...	9	
B4.3.2	NESTED	SCHEMA	ELEMENTS	..	11	
B4.3.3	USING	GEO-COORDINATES	..	13	

	
	
	
	 	

B4:	Mongoose	and	RESTful	APIs	 2	

B4.1	Introduction	to	RESTful	APIs		
	
In	the	previous	practical	we	integrated	the	MongoDB	database	with	our	Express	application,	
replacing	the	previous	JSON	data	file	with	a	live	connection	to	the	database.		Although	it	is	
important	to	know	how	to	work	with	the	MongoDB	database	directly	in	Node.js,	most	
applications	use	an	additional	software	layer	to	manage	database	activity	and	in	this	
practical	we	will	introduce	Mongoose	–	a	MongoDB	manager	for	the	MEAN	stack.	
	
Mongoose	is	particularly	suited	for	the	design	of	what	are	known	as	RESTful	APIs	–	that	is,	
web	applications	built	using	a	predictable	pattern	of	resources	and	URLs,	where	each	URL	
identifies	a	single,	well-defined	activity.	
	
	
B4.1.1	What	is	a	RESTful	API?	
	
REST	is	an	abbreviated	form	of	“REpresentational	State	Transfer”	and	describes	a	software	
model	in	which	a	resource-based	architecture	communicates	representational	state	
information	between	client	and	server.		By	resource-based,	we	mean	that	the	architecture	
is	designed	around	resources	or	objects	(nouns)	rather	than	operations	(verbs).		Hence,	we	
implement	URLs	for	businesses,	students,	cars,	or	whatever	other	objects	our	application	is	
dealing	with	–	rather	than	“new”,	“edit”,	“delete”	or	whatever	other	operations	are	being	
implemented.	
	
Typical	URL	patterns	in	a	RESTful	architecture	(for	example	in	our	sample	WeMeanBusiness	
application)	might	therefore	be	(e.g)	
	

• http://www.wemeanbusiness.com/businesses	
• http://www.wemeanbusiness.com/businesses/id	
• http://www.wemeanbusiness.com/businesses/id/reviews	
• http://www.wemeanbusiness.com/users	

	
	
The	REST	architecture	describes	six	constraints	as	follows.	
	

• Uniform	interface	between	client	and	server	
	
This	is	fundamental	to	RESTful	design	and	has	three	main	elements;	(1)	the	client	
indicates	a	request	to	the	server	by	using	one	of	the	HTTP	verbs	such	as	GET,	POST,	
PUT	or	DELETE;	(2)	The	client	request	is	in	the	form	of	a	URL;	(3)	The	server	response	
consists	of	an	HTTP	status	code	and	a	body	represented	in	JSON	or	XML	
	

• Statelessness	
	
This	is	the	concept	that	the	server	contains	no	state	information	about	the	client	–	
each	client	request	is	self-contained	and	provides	enough	information	for	it	to	be	
processed.		Any	state	information	that	is	required	(for	example	cookies,	session	

B4:	Mongoose	and	RESTful	APIs	 3	

variables,	etc.)	are	held	on	the	client.	
	

• Cacheable	
	
All	server	responses	are	cacheable	
	

• Client-server	
	
The	server	and	client	are	disconnected	with	no	shared	resources.	The	uniform	
interface	(above)	is	the	link	between	the	two.	
	

• Layered	system	
	
Connected	to	cacheability	and	client-server	organization,	the	client	cannot	assume	
any	direct	connection	with	the	server	as	there	may	be	software	or	hardware	
intermediaries.		For	example,	a	request	could	be	satisfied	by	a	cache	rather	than	by	
the	server,	or	the	request	may	be	re-directed	to	an	alternative	server.	
	

• Code	on	demand	
	
The	server	can	temporarily	extend	the	client	by	providing	executable	code	as	part	of	
the	response,	which	is	then	run	by	the	client.		For	example,	the	response	from	the	
server	may	contain	JavaScript	to	be	run	on	the	browser.	
	

	
B4.1.2	HTTP	Methods	and	Responses	
	
We	have	seen	how	the	URL	pattern	in	a	RESTful	application	identifies	the	data	object	with	
which	we	want	to	perform	some	operation,	but	how	do	we	denote	the	actual	operation	that	
we	want	to	execute?		For	example,	a	call	to	the	URL	
	

http://www.wemeanbusiness.com/businesses/id/reviews	
	
might	mean	that	we	want	to	see	the	collection	of	user	reviews	for	the	business	identified	by	
the	id	parameter	in	the	URL.		However,	it	might	equally	mean	that	we	want	to	add	a	review	
to	the	collection	of	reviews	for	that	business.	
	
The	way	in	which	we	communicate	our	intent	to	the	server	is	by	selection	of	the	
appropriate	HTTP	method	(verb).		You	may	already	be	familiar	with	the	GET	and	POST	
methods	from	previous	work	with	HTML	forms,	but	there	is	a	wider	selection	of	methods	
available,	each	with	their	own	specific	purpose,	corresponding	to	the	standard	CRUD	
(Create,	Read,	Update,	Delete)	operations	on	databases	and	described	in	Table	B4.1	below	
	
	
	
	
	

B4:	Mongoose	and	RESTful	APIs	 4	

HTTP	Method	 Action	requested	
GET	 Return	a	resource	
POST	 Create	a	new	resource	
PUT	 Update	a	resource	
DELETE	 Delete	a	resource	

	
Table	B4.1	HTTP	Methods	

	
	
Therefore,	a	GET	request	to	the	previous	URL	
http://www.wemeanbusiness.com/businesses/id/reviews	will	indicate	that	we	want	to	
fetch	a	list	of	reviews,	while	a	POST	request	to	the	same	URL	will	indicate	that	we	want	to	
add	a	new	review	to	the	collection.	
	
In	addition,	the	RESTful	model	suggests	recommended	HTTP	responses	to	each	combination	
of	URL	and	method.		Again,	you	will	have	already	used	some	of	these	(e.g.	200	OK,	404	Page	
not	found,	etc.),	but	the	complete	table	is	presented	below.	
	
	
	

Method	
Entire	collection	
(e.g.	/businesses)	

Specific	Item	
(e.g.	/businesses/id)	

POST	 201	(Created);	Location	header	
with	a	link	to	the	newly	created	
business	

404	(Not	found)	or	409	
(Conflict)	if	the	resource	already	
exists	

GET	 200	(OK);	List	of	businesses.		
Use	pagination,	sorting	and	
filtering	to	navigate	large	
collections	

200	(OK);	Single	business	in	
JSON	format	or	404	(Not	found)	
if	id	not	found	or	invalid	

PUT	 404	(Not	found)	–	unless	you	
provide	functionality	to	modify	
every	element	in	the	collection	

200	(OK)	or	204	(No	content	
provided)	or	404	(Not	found)	if	
id	not	found	or	invalid	

DELETE	 404	(Not	found)	–	unless	you	
intend	functionality	to	delete	
the	entire	collection	

200	(OK)	or	404	(Not	found)	if	id	
not	found	or	invalid.	

	
Table	B4.2	HTTP	Methods	and	Response	Codes	

	
	
	
B4.1.3	API	Design	
	
The	previous	discussions	on	RESTful	services	and	HTTP	methods	and	responses	lead	us	
towards	a	design	pattern	for	the	endpoints	(URLs)	in	our	API.		We	can	illustrate	this	by	
compiling	a	list	of	the	functionality	we	intend	to	provide	in	our	demonstration	application,	
specifying	the	HTTP	method	and	URL	for	each.		This	list	is	presented	in	Table	B4.3	below	–	

B4:	Mongoose	and	RESTful	APIs	 5	

note	how	a	single	URL	can	be	used	to	indicate	multiple	actions,	with	the	HTTP	Method	used	
to	distinguish	between	them.	
	
	
Method	 URL	 Action	

GET	 /api/businesses	 Get	all/multiple	businesses	

POST	 /api/businesses	 Create	a	new	business	

GET	 /api/businesses/123	 Get	a	specific	business	(with	ID=123)	

PUT	 /api/businesses/123	 Update	a	specific	business	

DELETE	 /api/businesses/123	 Delete	a	specific	business	

GET	 /api/businesses/123/reviews	 Get	all	reviews	for	a	specific	business	

POST	 /api/businesses/123/reviews	 Add	a	review	for	a	specific	business	

GET	 /api/businesses/123/reviews/321	 Get	a	specific	review	(with	ID=321)	for	
a	specific	business	

PUT	 /api/businesses/123/reviews/321	 Update	a	specific	review	for	a	specific	
business	

DELETE	 /api/businesses/123/reviews/321	 Delete	a	specific	review	

	
Table	B4.3	API	Design	for	the	WeMeanBusiness	Sample	Application	

	
	
A	standard	approach	to	URL	specification	is	an	important	element	in	API	design,	but	it	is	also	
important	to	standardise	the	data	across	all	of	the	different	endpoints.		For	example,	the	
specification	of	a	review	object	in	a	POST	request	to	/api/businesses/123/reviews	should	
be	the	same	as	that	in	a	PUT	request	to	/api/businesses/123/reviews/321.		Specifically,	if	
the	POST	request	provides	a	‘star’	rating	as	an	integer,	then	the	PUT	request	should	not	
provide	a	value	for	the	same	element	as	a	string.	
	
We	could	look	after	this	ourselves	in	the	application	code,	having	the	controller	logic	
perform	all	of	the	type	checking	and	conversion,	but	it	a	much	better	approach	would	be	to	
define	a	single	schema	object	to	which	our	data	must	adhere,	and	have	the	database	
manage	and	enforce	this	schema.	
	
The	native	MongoDB	driver	does	not	have	this	capability,	but	fortunately	there	are	a	
number	of	packages	available	through	npm	that	will	provide	this	useful	layer	of	data	
management,	making	available	schemas,	models,	helpers	and	validation	methods	that	make	
it	much	easier	to	produce	scalable	database-driven	applications.		The	most	widely	used	of	

B4:	Mongoose	and	RESTful	APIs	 6	

these	in	the	MEAN	stack	is	Mongoose,	so	we	will	install	this	package	and	convert	our	
application	to	allow	Mongoose	to	manage	the	communication	with	the	MongoDB	database.	
	
	

B4.2	Mongoose		
	
Mongoose	is	a	data-modelling	format	for	MongoDB	data	that	includes	built-in	type-casting,	
validation	and	query	building.		It	is	becoming	increasingly	popular	in	applications	built	using	
the	MEAN	stack	as	it	provides	a	lot	of	the	data	management	logic	that	would	otherwise	
have	had	to	be	implemented	in	the	application	controllers.	
	
	
B4.2.1	Install	Mongoose	
	
We	can	install	the	Mongoose	package	from	the	Command	prompt	by	executing	
	

U:\B4>	npm	install	mongoose	--save	
	
as	shown	in	Figure	B4.1	below.	
	
	
	

	
	

Figure	B4.1	Installing	Mongoose	from	npm	
	
	
B4.2.2	Establish	a	Mongoose	connection	
	
The	Mongoose	connection	architecture	is	slightly	different	from	that	seen	earlier	with	the	
native	MongoDB	database	package.		Whereas	the	native	MongoDB	connection	took	a	
callback	function	that	would	be	executed	when	the	connection	was	established,	in	

B4:	Mongoose	and	RESTful	APIs	 7	

Mongoose	we	listen	for	connection	events	and	act	upon	them	when	they	are	detected.		This	
is	demonstrated	in	the	code	box	below	that	presents	the	database	connection	file	that	will	
replace	our	current	dbConnect.js.	
	
	

	
File:	B4/api/data/dbConnect.js	
	

var mongoose = require('mongoose');
var dbURL = 'mongodb://localhost:27017/businessDB';

mongoose.connect(dbURL);

mongoose.connection.on('connected', function() {
 console.log("Mongoose connected to " + dbURL);
});

mongoose.connection.on('disconnected', function() {
 console.log("Mongoose disconnected");
});

mongoose.connection.on('error', function(err) {
 console.log("Mongoose connection error " + err);
});	

	
	
	
	
Here,	we	call	the	Mongoose	connect()	method,	passing	it	the	database	connection	string	
as	a	parameter.		Next	we	set	up	three	event	listeners,	each	monitoring	a	specific	Mongoose	
event	(‘connected’,	‘disconnected’	and	‘error’)	and	triggering	a	callback	function	that	
generates	a	console.log()	message.		The	structure	of	each	event	handler	is	identical	–	
except	for	the	‘error’	event	which	passes	an	error	object	as	a	parameter	to	the	callback	
function.	
	
Finally,	we	need	to	modify	the	line	of	code	at	the	top	of	app.js	that	calls	the	database	
connection,	to	remove	the	reference	to	the	former	open()	method	that	we	used	with	the	
native	MongoDB	connection.		The	revised	app.js	is	presented	in	the	code	box	below.	
	
	
	

	
File:	43/app.js	
	

require('./api/data/dbConnect.js');

...	

	

B4:	Mongoose	and	RESTful	APIs	 8	

We	can	now	test	the	Mongoose	connection	by	running	the	mongod	database	process	and	
starting	the	application.		If	everything	has	been	updated	correctly,	we	should	see	the	
“Mongoose	connected…”	message	illustrated	in	Figure	B4.2.	
	
	

	
	

Figure	B4.2	Mongoose	connected	
	
	
We	can	also	check	the	‘disconnect’	and	‘error’	event	listeners	by	stopping	and	restarting	the	
mongod	process	and	the	application	as	follows.	
	

i) Check	the	‘disconnect’	event	by	stopping	the	mongod	process	(Ctrl-C)	while	the	
application	is	still	running.		You	should	now	see	the	“Mongoose	disconnected”	
message	in	the	Console	window.		Now	start	mongod	again	and	observe	how	this	
is	automatically	detected	by	Mongoose,	resulting	in	the	“Mongoose	
connected…”	message	being	displayed	once	more.	
	

ii) Stop	both	the	mongod	process	and	the	application	and	then	re-start	the	
application	ONLY.		As	the	application	attempts	to	make	the	connection	without	a	
database	server	running,	you	should	see	the	“Mongoose	connection	error”	in	the	
Console	window.		

	
	

B4.3	Data	Schemas	and	Models		
	
One	of	the	most	useful	features	of	Mongoose	is	the	support	provided	for	data	modelling.		
This	allows	us	to	define	the	data	type	and	structure	of	each	of	the	elements	in	our	
MongoDB	document,	so	that	the	application	can	automatically	monitor	the	data	presented	
and	ensure	that	it	represents	a	valid	object	in	the	context	of	our	application.	
	

B4:	Mongoose	and	RESTful	APIs	 9	

A	data	model	is	created	by	passing	to	it	a	Mongoose	Schema,	which	describes	the	structure	
of	the	document	as	a	JavaScript	object.		We	will	create	a	new	model	for	our	sample	
collection	of	businesses	by	creating	a	new	file	in	the	/api/data	folder	called	
businesses.model.js.	
	
	
B4.3.1	Basic	Schema	Elements	
	
The	schema	is	defined	as	a	sequence	of	paths,	each	referring	to	a	database	field,	with	
associated	schema	types.		For	example,	in	the	code	box	below	we	have	the	paths	“name”	
and	“city”	defined	as	type	String,	paths	“stars”	and	“review_count”	defined	as	type	Number	
and	path	“categories”	defined	as	an	array	of	string	values.	
	
	

	
File:	B4/data/businesses.model.js	
	

var mongoose = require('mongoose');

var businessSchema = new mongoose.Schema({
 name : String,
 stars : Number,
 city : String,
 review_count : Number,
 categories : [String]
});	

	
	
Sometimes,	however,	we	want	to	record	additional	information	about	certain	paths.		For	
example,	let’s	specify	that	the	“name”	is	a	compulsory	element	that	must	be	provided	(by	
default,	all	fields	are	optional)	and	that	the	“stars”	value	must	be	in	the	range	0-5.		We	will	
also	specify	that	the	default	value	for	“stars”	should	be	0.	
	
In	these	cases,	we	need	to	expand	the	definition	for	those	paths,	so	that	the	value	is	a	
JavaScript	object,	with	a	“type”	attribute	used	to	define	the	schema	type.		The	following	
code	box	presents	the	schema	modified	with	these	new	requirements.	
	
	
	
	
	
	
	
	
	
	

B4:	Mongoose	and	RESTful	APIs	 10	

	
File:	B4/data/businesses.model.js	
	

var businessSchema = new mongoose.Schema({
 name : {
 type : String,
 required : true
 },
 stars : {
 type : Number,
 min : 0,
 max : 5,
 default: 0
 },
 ...	

	
	
Once	the	schema	has	been	defined,	we	compile	it	to	a	model	by	the	command	
	

mongoose.model(Model_name, schema_name, MongoDB_collection)
	
where,	by	convention,	we	specify	the	model	name	as	a	capitalized,	singular	version	of	the	
collection	name.		The	full	model	definition	(so	far)	is	shown	in	the	code	box	below.	
	
	

	
File:	B4/data/businesses.model.js	
	

var mongoose = require('mongoose');

var businessSchema = new mongoose.Schema({
 name : {
 type : String,
 required : true
 },
 stars : {
 type : Number,
 min : 0,
 max : 5,
 default: 0
 },
 city : String,
 review_count : Number,
 categories : [String]
});

mongoose.model('Business', businessSchema, 'business');	

	
	

B4:	Mongoose	and	RESTful	APIs	 11	

Now,	we	need	to	tell	the	application	about	the	existence	of	the	data	model,	so	that	
Mongoose	can	direct	all	database	access	through	the	model.		This	is	done	by	simply	
require-ing	the	new	businesses.model.js	file	at	the	end	of	the	database	connection	code.	
	
	

	
File:	B4/data/dbConnect.js	
	

var mongoose = require('mongoose');
var dbURL = 'mongodb://localhost:27017/businessDB';

mongoose.connect(dbURL);

mongoose.connection.on('connected', function() {
 console.log("Mongoose connected to " + dbURL);
});

mongoose.connection.on('disconnected', function() {
 console.log("Mongoose disconnected");
});

mongoose.connection.on('error', function(err) {
 console.log("Mongoose connection error " + err);
});

require('./businesses.model.js');	

	
	
	
B4.3.2	Nested	Schema	Elements	
	
All	of	the	schema	elements	so	far	have	either	been	simple	values	such	as	String	or	Number,	
or	arrays	of	simple	values.		However,	our	business	document	has	some	elements	that	are	
specified	as	sub-documents	in	their	own	right	–	such	as	‘reviews’	and	‘photos’	which	are	
both	arrays	of	complex	elements	defined	as	JavaScript	objects.	
	
Mongoose	provides	for	such	nested	structures	by	allowing	us	to	define	separate	schema	
definitions	for	each	sub-document,	and	then	using	the	sub-document	specification	as	a	
schema	type	in	the	top-level	schema.		The	only	restriction	is	that	sub-document	schemas	
MUST	be	defined	before	they	are	used,	to	prevent	forward-reference	errors.	
	
The	following	code	box	illustrates	the	definition	of	the	sub-documents	“votes”	and	“review”	
and	their	inclusion	in	the	main	scheme	definition.	
	
	
	
	
	
	

B4:	Mongoose	and	RESTful	APIs	 12	

	
File:	B4/data/	businesses.model.js	
	

var mongoose = require('mongoose');

var votesSchema = new mongoose.Schema({
 funny : Number,
 useful : Number,
 cool : Number
})

var reviewSchema = new mongoose.Schema({
 username : String,
 votes : votesSchema,
 user_id : String,
 review_id : String,
 text : String,
 business_id : String,
 stars : Number,
 date :{
 type : Date,
 defalt : Date.now
 },
 type : String
})

var businessSchema = new mongoose.Schema({
 name : {
 type : String,
 required : true
 },
 ...
 categories : [String],
 reviews: [reviewSchema]
});

mongoose.model('Business', businessSchema, 'business');	

	
	
	
Here,	we	first	define	a	schema	for	the	votes	object	that	is	nested	inside	a	review.		This	
consists	of	three	Number	values	which	are	used	to	count	the	“likes”	gathered	by	a	review.	
Then	we	create	a	schema	for	a	review,	using	the	new	votesSchema	as	the	schema	type	for	
the	nested	votes	element.	Note	also	the	use	of	the	Date	schema	type	and	how	we	can	
provide	a	default	value	for	the	current	date	when	a	review	is	submitted.	
	
Finally,	in	the	main	schema	body,	we	specify	that	the	reviews	element	is	defined	as	an	
array	of	reviewSchema	elements.	
	
	
	
	

B4:	Mongoose	and	RESTful	APIs	 13	

B4.3.3	Using	Geo-coordinates	
	
A	very	useful	feature	of	Mongoose	is	the	ability	to	index	documents	according	to	their	geo-
location.		This	makes	it	possible	to	query	the	database	by	location,	for	example	“find	a	
restaurant	near	a	given	business”.	
	
Our	data	set	has	all	of	the	information	required	to	create	such	an	index,	but	unfortunately	it	
is	not	quite	in	the	format	needed,	so	we	will	first	create	the	schema	entry	that	will	support	
geo-indexing	and	then	see	how	to	modify	the	data	structure	to	provide	this.	
	
In	our	database,	the	location	is	described	by	the	three	fields	“full_address“,	“longitude”	and	
“latitude”.		Although	these	are	separate	fields	in	our	database	structure,	it	would	be	better	
if	they	were	grouped	into	a	single	object	–	so	we	will	create	a	schema	element	in	this	form,	
where	a	“location”	is	described	by	a	String	address	and	an	array	of	Number	coordinates	in	
longitude,	latitude	order.		We	also	define	an	index	on	the	coordinates	element	as	a	
2dsphere,	instructing	the	database	to	index	the	coordinate	values	as	an	(x,	y)	representation	
on	the	surface	of	a	sphere	
	
	

	
File:	B4/data/	businesses.model.js	
	

...

var businessSchema = new mongoose.Schema({
 ...
 location : {
 address : String,
 coordinates : {
 type : [Number],
 index : '2dsphere'
 }
 }

...	

	
	
Now	that	we	have	defined	the	schema	definition	for	location,	we	need	to	adjust	our	
database	structure	to	match.		The	easiest	way	to	do	this	is	to	open	a	copy	of	the	B3	files	in	
the	code	editor	and	add	a	new	route	GET	/fixDatabase	to	the	file	/api/routes/index.js.		This	
route	should	call	the	new	controller	fixDatabase	as	shown	in	the	following	code	box.	
	
	
Note:	This	part	of	the	exercise	should	be	carried	out	in	your	B3	application.		We	are	
currently	in	the	middle	of	converting	the	database	access	from	the	native	MongoDB	driver	
to	Mongoose,	and	B3	is	the	latest	fully	runnable	version.	
	
	

B4:	Mongoose	and	RESTful	APIs	 14	

	
File:	B3/api/routes/index.js	
	

...

router
 .route('/fixDatabase')
 .get(businessesController.fixDatabase);
...	

	
	
Now,	define	the	new	controller	in	/api/controllers/business.controllers.js.		This	code	will	
read	all	of	the	documents	in	the	business	collection	and	then	loop	across	the	array	
returned.		For	each	document	in	the	collection,	we	extract	the	_id,	full_address,	longitude	
and	latitude	values	and	then	use	an	updateOne	query	to	add	a	new	element	called	
location	with	the	format	specified	in	our	schema.		
	
	

	
File:	B3/api/controllers/businesses.controllers.js	
	

module.exports.fixDatabase = function(req, res) {
 var db = dbConnect.get();
 var collection = db.collection('business');

 collection
 .find()
 .toArray(function(err, docs) {
 for (var i = 0; i < docs.length; i++) {
 business = docs[i];
 _id = business._id;
 full_address = business.full_address;
 longitude = business.longitude;
 latitude = business.latitude;
 collection.updateOne (
 { "_id" : _id },
 { $set : {
 "location" : {
 "address" : full_address,
 "coordinates" : [
 longitude, latitude]
 }
 }
 }
);
 }
 res
 .status(200)
 .json({“Message” : “Database updated”});
 })
}	

B4:	Mongoose	and	RESTful	APIs	 15	

	
Now,	run	the	database	correction	code	by	running	the	application	and	visiting	the	URL	
http://localhost:3000/api/fixDatabase	and	export	the	new	collection	to	a	JSON	file	by	the	
command	
	

mongoexport	--db	businessDB	--collection	business	--jsonArray	--pretty		
--out	businessDB.json	

	
and	verify	that	each	document	has	a	new	location	element	added,	in	the	format	described	
by	our	schema,	as	illustrated	in	Figure	B4.3	below.	
	
	

	
	

Figure	B4.3	Location	element	added	to	database	
	

	
	
	
	

